A Linear Feature-Based Approach for the Registration of Unmanned Aerial Vehicle Remotely-Sensed Images and Airborne LiDAR Data
نویسندگان
چکیده
Compared with traditional manned airborne photogrammetry, unmanned aerial vehicle remote sensing (UAVRS) has the advantages of lower cost and higher flexibility in data acquisition. It has, therefore, found various applications in fields such as three-dimensional (3D) mapping, emergency management, and so on. However, due to the instability of the UAVRS platforms and the low accuracy of the onboard exterior orientation (EO) observations, the use of direct georeferencing image data leads to large location errors. Light detection and ranging (LiDAR) data, which is highly accurate 3D information, is treated as a complementary data source to the optical images. This paper presents a semi-automatic approach for the registration of UAVRS images and airborne LiDAR data based on linear control features. The presented approach consists of three main components, as follows. (1) Buildings are first separated from the point cloud by the integrated use of height and size filtering and RANdom SAmple Consensus (RANSAC) plane fitting, and the 3D line segments of the building ridges and boundaries are semi-automatically extracted through plane intersection and boundary regularization with manual selections; (2) the 3D line segments are projected to the image space using the initial EO parameters to obtain the approximate locations, and all the corresponding 2D line segments are semi-automatically extracted from the UAVRS images. Meanwhile, the tie points of the UAVRS images are generated using a Förstner operator and least-squares image matching; and (3) by use of the equations derived from the coplanarity constraints of the linear control features and the colinear constraints of the tie points, block bundle adjustment is carried out to update the EO parameters of the UAVRS images in the coordinate framework of the LiDAR data, achieving the co-registration of the two datasets. Experiments were performed to demonstrate the validity and effectiveness of the presented method, and a comparison with the traditional registration method based on LiDAR intensity images showed that the presented method is more accurate, and a sub-pixel accuracy level can be achieved.
منابع مشابه
Conditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملAutomatic UAV Image Geo-Registration by Matching UAV Images to Georeferenced Image Data
Recent years have witnessed the fast development of UAVs (unmanned aerial vehicles). As an alternative to traditional image acquisition methods, UAVs bridge the gap between terrestrial and airborne photogrammetry and enable flexible acquisition of high resolution images. However, the georeferencing accuracy of UAVs is still limited by the low-performance on-board GNSS and INS. This paper invest...
متن کامل3D scene reconstruction from IR image sequences for image based navigation update and target detection of an autonomous airborne system
The successful mission of an autonomous airborne system like an unmanned aerial vehicle (UAV) strongly depends on an accurate target approach as well as the real time acquisition of detailed knowledge about the target area. An automatic 3D scene reconstruction of the overflown ground by a structure from motion system enables to interpret the scenario and to react on possible changes by optimiza...
متن کاملFeature - based Automated Aerial Image to Satellite Image Registration
Image processing is required in number of fields like clinical diagnosis, remote sensing and computer vision. The need for overlaying of images exists in image processing. Image registration is the basis step in various applications of image processing. Registration involves digital preprocessing of the images. It is an important component of various systems including matching a target with a r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016